首页> 外文学位 >Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing
【24h】

Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing

机译:飞秒激光写入法制备熔融石英中线性和非线性光子器件及其表征

获取原文
获取原文并翻译 | 示例

摘要

Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (< 0.5 dB) curved waveguides, directional couplers (DCs), and Mach-Zehnder interferometers (MZIs). The robustness and consistency of this maturing fabrication process was also reinforced through the scalable design and integration of a more complex, multi-component flat-top interleaver over a wide >70-nm spectral window.;My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 --11/W-cm--2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0:020 +/- 0:002 pm/V was measured.;The results collectively demonstrate the versatility of femtosecond laser additive and subtractive fabrication and opens up the development of integrated nonlinear applications and photonic devices for future lab-on-a-chip and lab-in-a-fiber devices.
机译:飞秒激光加工是一种灵活的三维(3D)制造技术,用于在熔融石英中制造集成的低损耗光子器件。我的工作通过设计和优化线性光学组件(例如低损耗(<0.5 dB)弯曲波导,定向耦合器(DC)和Mach-Zehnder干涉仪(MZI))扩展了可用的光学设备套件。通过可扩展的设计以及在70纳米以上的宽光谱窗口上集成更复杂的多组件平顶交织器,这种成熟制造工艺的鲁棒性和一致性也得到了增强。非线性设备功能的发展。虽然热极化是众所周知的过程,但重大挑战限制了熔融石英中非线性器件的开发。激光写入过程将消除感应的非线性(擦除),而写入的波导纤芯则成为热极化过程(阻挡)的障碍。使用二次谐波(SH)显微镜,系统地分析了激光写入波导上热极化的有效性,从而得出了“双极化”技术,该技术有效地克服了擦除和阻塞的两个挑战。在这种新工艺中,在波导管写入之前和之后对基板进行极化处理,以恢复波导管附近的感应非线性,从而实现有效极化,从而在熔融石英中诱发二阶非线性(SON)。还开发了一种新的基于飞秒激光的柔性擦除过程,以实现准相位匹配并形成任意chi光栅。根据该结果,对准相位匹配(QPM)飞秒激光写入波导器件中的二次谐波(SHG)进行了演示。还演示了Q QPM结构中的SHG,以说明飞秒激光写入技术的灵活性。这是全飞秒激光写入结构中倍频的首次演示。对于1552.8 nm的基本波长,对于10.0 mm长的波导,其相匹配带宽为4.4 nm,最大SHG转换效率为1.3 +/- 0.1x10 --11 / W-cm--2。对于较短的样品,测量到的chi(2)的有效SON = 0:020 +/- 0:002 pm / V .;结果共同证明了飞秒激光添加剂和减法制造的多功能性,并开辟了集成化的发展非线性应用和光子器件,以用于未来的芯片实验室和光纤实验室设备。

著录项

  • 作者

    Ng, Jason Clement.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号