首页> 外文学位 >Designing Materials for Inorganic and Living Photocatalytic Systems for Air, Water, and CO2 Reduction from Sunlight
【24h】

Designing Materials for Inorganic and Living Photocatalytic Systems for Air, Water, and CO2 Reduction from Sunlight

机译:设计用于无机和活性光催化系统以减少阳光,空气,水和CO2的材料

获取原文
获取原文并翻译 | 示例

摘要

Several strategies are currently being investigated for conversion of incident sunlight into chemical fuels, with readily available chemical feedstocks like air, water, and carbon-dioxide. This thesis focuses on research approach on designing high-efficiency and high-selective photocatalytic materials, ranging from inexpensive and stable inorganic photocatalysts to living nano-biohybrid organisms to achieve solar energy conversion.;This thesis is divided into multiple sections based on the materials and concepts in designing high-efficient and high-selective solar fuel generator. After a brief introduction of photocatalysis in Chapter 1, we describe a novel electrochemical anodization technique for making a wide-variety of doped metal-oxide nanotubes. Using optoelectronic and electrochemical characterizations, we systematically studied dopant (anionic and cationic) effects in photocatalytic water splitting from the aspect of light absorption, charge transport, and charge transfer (Chapter 2 to 4).;In the second part (Chapter 5), we describe a novel low-temperature amine-based synthesis and cation exchange method for synthesizing ultrathin two-dimensional metal chalcogenide nanostructures. We reported their extraordinary optoelectronic characteristics and potential applications in third-generation solar energy conversion devices.;In the third section (Chapter 6), we describe formation of living quantum dot-synthetic bacteria nano-biohybrids, with desired metabolic pathways for selective formation of fuel, designed QD energy states for efficient light-sensitization, suitable alignment, and charge injection to bacterial enzymes for photocatalytic reduction, using cellular uptake, cell viability, and designed site-specific attachment of quantum dots from growth solutions to bacterial enzymes. These engineered nano-biohybrids affect efficient light-driven hydrogen and ammonia production from water and air-water reduction and shows no loss of enzyme function between purified nitrogen and air.;Finally, we demonstrate color tuning of upconversion photoluminescence by modulating the photophysics using surface plasmon polaritons (Chapter 7). Furthermore, by using ultrathin 2D semiconductor nanosheets, we demonstrate the efficacy of color tuning by transforming upconverted light into photocurrent. This can pave the way for designed metal nanostructures for highly-efficient utilization of low-intensity sub-bandgap infrared radiation in optoelectronic devices.
机译:目前正在研究几种策略,以将入射的阳光转化为化学燃料,并采用容易获得的化学原料,例如空气,水和二氧化碳。本文主要研究设计高效,高选择性的光催化材料的方法,从廉价,稳定的无机光催化剂到能实现太阳能转化的纳米生物杂化生物。高效率和高选择性太阳能燃料发生器的设计概念。在第1章中简要介绍了光催化作用之后,我们描述了一种新颖的电化学阳极氧化技术,用于制备各种掺杂的金属氧化物纳米管。我们使用光电和电化学特性,从光吸收,电荷传输和电荷转移的角度(第2至4章)系统地研究了光催化水分解中的掺杂剂(阴离子和阳离子)效应。在第二部分(第5章)中,我们描述了一种新型的基于低温胺的合成和阳离子交换方法,用于合成超薄二维金属硫族化物纳米结构。我们报告了它们非凡的光电特性及其在第三代太阳能转换装置中的潜在应用。在第三部分(第6章)中,我们描述了活的量子点合成细菌纳米生物杂化物的形成,以及为选择性地形成生物合成所需的代谢途径。燃料,设计的QD能量状态以实现有效的光敏化,合适的排列,并利用细胞吸收,细胞生存力以及对细菌生长酶中量子点的位点特异性附着进行设计,以对细菌酶进行光催化还原以进行光催化还原。这些工程化的纳米生物混合物会影响水和空气-水的还原过程中有效的光驱动氢和氨的产生,并且在纯净的氮气和空气之间不会显示酶功能的损失。等离子体激元极化子(第7章)。此外,通过使用超薄二维半导体纳米片,我们证明了通过将上转换的光转换为光电流来进行色彩调节的功效。这可以为设计金属纳米结构铺平道路,以便在光电设备中高效利用低强度亚带隙红外辐射。

著录项

  • 作者

    Ding, Yuchen.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Nanoscience.;Materials science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 305 p.
  • 总页数 305
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号