首页> 外文学位 >Characterization of genes regulated during sclerotial development in the fungal plant pathogen Sclerotinia sclerotiorum (Lib.) de Bary.
【24h】

Characterization of genes regulated during sclerotial development in the fungal plant pathogen Sclerotinia sclerotiorum (Lib.) de Bary.

机译:真菌植物病原菌核盘菌(Sclerotiania sclerotiorum(Lib。)de Bary)在菌核发育过程中调控的基因的表征。

获取原文
获取原文并翻译 | 示例

摘要

Sclerotinia sclerotiorum (Lib.) de Bary is a devastating fungal phytopathogen with a broad host range and global distribution. The resting structures produced by this fungus, sclerotia, are crucial for survival in harsh environments and further dissemination of the fungus when environmental conditions become conducive. Sclerotia can germinate as hyphae to initiate disease directly or germinate as fruiting bodies, apothecia, to produce forcibly-discharged ascospores that act as a dispersible inoculum source. To begin a molecular genetic dissection of sclerotial developmental regulation, the first gene I chose for investigation was Ss_ssp1. The protein encoded by this gene was previously described as the major storage protein present in mature sclerotia of S. sclerotiorum. I found that ssp1 transcripts specifically accumulated in all stages of sclerotial development with peak levels in stage IV sclerotia. In contrast with the sclerotia-restricted spatial accumulation of ssp1 transcripts, Ssp1 protein accumulation was detected in all sclerotial and apothecial stages. Immunolocalization suggests the release of Ssp1 from sclerotial protein bodies and the relocation to apothecia during carpogenic germination. Contrary to our original hypothesis, Ss_ssp1 deletion does not distinctively affect sclerotial development or carpogenic germination. However, the upregulation of the Ss_ssp1 paralog, Ss_ssp2 and another 16kDa major protein in deletion mutants indicates a possible functional redundancy and compensatory role for the Ss_Ssp1 homolog and other sclerotia-accumulating proteins. To comprehensively investigate genes involved in sclerotial development, transcriptome profiling during sclerotial initiation was conducted using a genomic, long oligomer microarray. When compared to gene expression during hyphal growth, 15% of the genes from the S. sclerotiorum genome were differentially expressed (up- or down-regulated) during sclerotial initiation. Additionally, 14% or the orphan ESTs examined are predicted to be newly discovered genes on the basis of my microarray analysis and annotation. The gene encoding a gamma-glutamyl transpeptidas (Ss_ggt) was one of the genes whose expression was markedly upregulated during sclerotial initiation by microarray analysis. Gene deletion mutant of Ss_ggt resulted in distinct morphological aberrations in sclerotial morphology. In mature dry sclerotia, the cortex layer was thickened and easily peeled away with the rind from the medulla. Sclerotia of the Ss_ggt deletion mutant failed to carpogenically germinate into apothecia due to an internal breakdown of the interior sclerotial tissue during the carpogenic germination incubation period. This phenotype is attributed to poor environmental protection of the medulla, allowing the cortex to easily be separated from the rind outerlayer.
机译:核盘菌核盘菌(Sclerotiorum sclerotiorum(Lib。)de Bary)是具有破坏性的真菌植物病原体,具有广泛的宿主范围和全球分布。这种真菌产生的静止结构,菌核,对于在恶劣环境中生存以及在环境条件有利时进一步传播真菌至关重要。菌核可以作为菌丝发芽而直接引发疾病,也可以作为子实体无神菌发芽,从而产生强力排出的子囊孢子,这些子囊孢子作为可分散的接种源。要开始进行硬化发育调控的分子遗传解剖学,我选择进行研究的第一个基因是Ss_ssp1。由该基因编码的蛋白质先前被描述为存在于核盘菌中的成熟菌核中的主要存储蛋白。我发现ssp1转录物在菌核发育的各个阶段特别积累,并且在IV期菌核处于峰值水平。与菌核限制的ssp1转录物的空间积累相反,在所有菌核和无神论阶段都检测到Ssp1蛋白的积累。免疫定位表明,在生皮发芽过程中,Ssp1从硬化蛋白体中释放出来,并重定位到紫杉醇上。与我们最初的假设相反,Ss_ssp1缺失并没有明显影响硬化发育或生色发芽。但是,Ss_ssp1旁系同源物,Ss_ssp2和另一个16kDa主要蛋白质在缺失突变体中的上调表明Ss_Ssp1同源物和其他菌核积累蛋白可能具有功能冗余和补偿作用。为了全面研究与硬化发育有关的基因,使用基因组长寡聚物微阵列进行硬化起始过程中的转录组谱分析。当与菌丝生长过程中的基因表达进行比较时,来自菌核盘菌基因组的基因中有15%在菌核起始过程中被差异表达(上调或下调)。此外,根据我的微阵列分析和注释,预计检查的孤儿EST中有14%是新发现的基因。编码γ-谷氨酰转肽酶(Ss_ggt)的基因是通过微阵列分析在硬化过程中其表达明显上调的基因之一。 Ss_ggt的基因缺失突变体导致硬化形态的形态异常明显。在成熟的干燥菌核中,皮质层变厚,容易被髓质的果皮剥落。 Ss_ggt缺失突变体的菌核未能在生根发芽潜伏期中因内部菌核组织的内部分解而在生根上发芽成紫杉。该表型归因于髓质的不良环境保护,使皮层很容易与外皮分离。

著录项

  • 作者

    Li, Moyi.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Agriculture Plant Pathology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物病理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号