首页> 中文期刊> 《化学学报》 >介质阻挡放电微型化-长光程原子吸收光谱测定汞及甲基汞

介质阻挡放电微型化-长光程原子吸收光谱测定汞及甲基汞

         

摘要

The development of miniaturized instrumentations for specific analytical purposes has been one of the most important momentum in the field of instrumental innovation.Sequential injection system as a miniaturized analytical platform provides an alternative for field of analysis of heavy metal contaminants.It will exhibit more powerful capability with the introduction of atomization function and improvement of detection sensitivity.In this work,a miniature long-optical path atomic absorption spectrometric system is developed with dielectric barrier discharge (DBD) low temperature micro-plasma as atomizer.Mercury and methylmercury vapor is generated in a sequential injection system.It is directed to flow through a gas-liquid separator,a glass wool moisture-removal microcolumn and the DBD atomizer,and finally transported into the long optical-path detection cell for quantitative analysis by atomic absorption spectrometry.A 10 mA lamp current is used with a mercury hollow cathode lamp,and a 260 V negative high voltage for the photomultiplier is set.The detection sensitivity of the present system is highly improved by the increase of absorption optical path (1.1 mm i.d.,400 mm length),and the atomization of hydride is completely achieved by the DBD micro-plasma atomizer.Meanwhile,a glass wool moisture-removal microcolumn integrated in the flow system effectively eliminates the influence of concomitant moisture during the vapor generation process,which avoids the drift of absorbance baseline.The absorbance arising from merucury is recorded by turning off the DBD atomizer,while the total absorbance from both mercury and methylmercury is measured by turning on the DBD atomizer.Further experiments demonstrated satisfactory additivity for the absorbance arising from inorganic and methyl mercury,which provides basis for the determination of mercury and methylmercury.With a sampling volume of 1.0 mL,detection limits of 0.3 and 0.4 μg·L-1 are achieved respectively for inorganic and methylmercury,along with RSD values of <4%.The reliability of the present system is demonstrated by analyzing certified reference materials and real samples for mercury speciation.%以介质阻挡放电(DBD)为低温原子化器并引入长光程吸收检测池,建立了微型化原子吸收光谱系统.在顺序注射系统中产生的汞及甲基汞蒸气依次经过气液分离器、玻璃棉除水微柱和原子化器然后进入长光程吸收检测池,进行原子吸收光谱测定.当DBD原子化器关闭时,通过冷原子吸收测得无机汞的吸光度,而当DBD原子化器开启时,得到无机汞和甲基汞的总吸光度.在本体系中两种汞形态的吸光度具有很好的加合性,从而有利于实现无机汞和甲基汞的分别测定.当进样体积为1.0 mL时,无机汞与甲基汞的检出限分别为0.3和0.4 μg·L-1,相对标准偏差均小于4%.用本微型化原子吸收光谱系统测定了实际样品中的汞及其形态,证明了该系统的可靠性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号