首页> 中文期刊> 《物理学报》 >非磁化冷等离子体柱中的模式辐射特性分析

非磁化冷等离子体柱中的模式辐射特性分析

         

摘要

The electromagnetic surface waves which propagate along a non-magnetized cold plasma column have a great value in the application of plasma antenna. In this paper, the dispersion properties, the transmission power distributions, and the radiation patterns for these electromagnetic surface waves which have lower frequencies than the electron plasma frequency are analyzed numerically. Based on Helmholtz equation, the specific expression of dispersion equation is derivedby the field matching method, then the exact values of complex axial wave vector kz under different wave frequencies are obtained by solving the transcendental dispersion relation. Using the specific value of kz obtained above, the exact expressions of transmission power profile in the plasma column and field profiles in the three regions, i.e., plasma, dielectric, and free space are derived, respectively. Finally, based on the complex form of electric conductivity that is derived from the Boltzmann-Vlasov equation with Krook term and the complex axial wave vector kz obtained above, the influence of the parameterωpea/c on phase property, and the dependence of radiation pattern and transmission power profile on wave frequency of the non-magnetized cold plasma column in a cylindrical dielectric tube system are analyzed. The results show that the electron plasma frequency has a significant influence on the phase property, which is evidently confirmed by the fact that the propagation velocities of the three modes m=0, m=1 and m=2 are all near to the light speed when the value of parameter ωpea/c gradually increases. Meanwhile, through the investigation of the radiation patterns for the three modes, an important conclusion is that the radiation pattern has evident dependence on wave frequency. While the radiation direction of the main lobe is in the axial direction for the m=1 mode, the m?=1 modes each have an angle between the radiation direction of the main lobe and the axial direction, this crucial conclusion is in good agreement with the theoretical calculation results obtained from other researcher. Further, we find that with the increase of wave frequency, the angle between the main lobe radiation direction and the axial direction turns smaller for each of m = 0 and m = 2 modes, and the width of main lobe gradually narrows for each of all modes, and the amplitude of the first side lobe becomes notable for each of m=0 and m=2 modes and ignorable for the m=1 mode. Also, the transmission power increases as the wave frequency increases for each of all modes. These theoretical calculation results provide a detailed theoretical reference for the designing of plasma stealth and high-precision requirements of plasma antenna design, and giving a comprehensive optimization guidance for the modulation of plasma antenna.%利用亥姆霍兹方程和场匹配法,推导出了被圆柱介质管包裹的均匀非磁化冷等离子体柱中各角向模的色散关系.数值计算并分析了角向对称模(m=0模)、非角向对称模(m?=0模)的色散特性以及在不同波频率下各模式的辐射特性.研究发现,在波频率ω小于等离子体频率ωpe条件下,当ω一定时,各模式的传播速度随着ωpe的增大逐渐接近光速;m=1角向模式属于端向辐射,其主瓣辐射方向在轴向,而且随着ω的增大,其主瓣宽度逐渐变小,且出现幅值极小的副瓣;对于m=1模式,其主瓣辐射方向均与轴向存在一定夹角,既不属于端向辐射也不属于法向辐射,且随着ω的增大,其主瓣宽度逐渐变小;各个模式的传播功率随着ω的增大逐渐增大.

著录项

  • 来源
    《物理学报》 |2017年第5期|223-230|共8页
  • 作者

    李文秋; 王刚; 苏小保;

  • 作者单位

    中国科学院电子学研究所,北京 100190;

    中国科学院大学,北京 100049;

    中国科学院电子学研究所,北京 100190;

    中国科学院大学,北京 100049;

    中国科学院电子学研究所,北京 100190;

    中国科学院大学,北京 100049;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    等离子体; 角向模式; 辐射方向图; 色散关系;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号