首页> 中文期刊> 《物理学报》 >γ射线总剂量辐照对单轴应变Si内米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响

γ射线总剂量辐照对单轴应变Si内米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响

         

摘要

The carrier microscopic transport process of uniaxial strained Si n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) is analyzed under γ-ray radiation.The model of radiation-induced defect densities that are quantitative representations of trapped charges integrated across the thickness of the oxide (Not),and the number of interface traps at the semiconductor/oxide interface (Nit),is established.The variations of electrical characteristics of the uniaxial strained Si nanometer NMOSFET are also investigated under the total dose radiation.The device of uniaxial strained Si nanometer NMOSTET is irradiated by a 60Co γ-ray laboratory source at a constant dose rate of 0.5 Gy (Si)/s.The TID is deposited in several steps up to a maximum value of 2.5 kGy.Electrical measurements are performed at each TID step.All irradiated samples are measured using field test,and are required to finish measurement within 30 min,in order to reduce the annealing effect.Static drain-current ID vs.gate-voltage VGs electrical characteristics are measured with an HP4155B parametric analyzer.Some parameter extractions presented here come from these static measurements including the threshold voltage VTH,the trans-conductance gm,and the leakage current IOFF (ID at VGS =0 V and VDS =VDD).Irradiation bias:VG =+1 V,drain voltage VD is equal to source voltage Vs (VD =Vs =0).Measurement bias:VG =0-1 V,scanning voltage Ystep =0.05 V,VD =50 mY,and Vs =0.The results indicate the drift of threshold voltage,the degradation of carrier mobility and the increase of leakage current because of the total dose radiation.Based on quantum mechanics,an analytical model of tunneling gate current of the uniaxial strained Si nanometer is developed due to the total dose irradiation effect.Based on this model,numerical simulation is carried out by Matlab.The influences of total dose,geometry and physics parameters on tunneling gate current are simulated.The simulation results show that when radiation dose and bias are constant,the tunneling gate current increases as the channel length decreases.When the structure parameters and the stress are fixed,the tunneling gate current increases with the increase of radiation dose.Whereas at a given the radiation dose,tunneling gate current will decrease due to the stress.When radiation dose and bias are kept unchanged,the tunneling gate current increases with the thickness of the gate oxide layer decresing.When the gate-source voltage,the thickness of oxide layer and stress are fixed,tunneling gate current is reduced with the increase of doping concentration in channel.When the structural parameters,the gate-source voltage and radiation dose are constant,the tunneling gate current decreases with increasing drain-source voltage.In addition,to evaluate the validity of the model,the simulation results are compared with experimental data,and good agreement is confirmed.Thus,the experimental results and proposed model provide good reference for research on irradiation reliability and application of strained integrated circuit of uniaxial strained Si nanometer n-channel metal-oxide-semiconductor field-effect transistor.%基于γ射线辐照条件下单轴应变Si纳米n型金属氧化物半导体场效应晶体管(NMOSFET)载流子的微观输运机制,揭示了单轴应变Si纳米NMOSFET器件电学特性随总剂量辐照的变化规律,同时基于量子机制建立了小尺寸单轴应变Si NMOSFET在γ射线辐照条件下的栅隧穿电流模型,应用Matlab对该模型进行了数值模拟仿真,探究了总剂量、器件几何结构参数、材料物理参数等对栅隧穿电流的影响.此外,通过实验进行对比,该模型仿真结果和总剂量辐照实验测试结果基本符合,从而验证了模型的可行性.本文所建模型为研究纳米级单轴应变Si NMOSFET应变集成器件可靠性及电路的应用提供了有价值的理论指导与实践基础.

著录项

  • 来源
    《物理学报》 |2017年第7期|361-369|共9页
  • 作者单位

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

    西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安710071;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    单轴应变Si; 纳米n型金属氧化物半导体场效应晶体管; 总剂量; 栅隧穿电流;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号