首页> 中文期刊> 《应用数学和力学:英文版》 >Characteristic equation solution strategy for deriving fundamental analytical solutions of 3D isotropic elasticity

Characteristic equation solution strategy for deriving fundamental analytical solutions of 3D isotropic elasticity

         

摘要

A simple characteristic equation solution strategy for deriving the fundamental analytical solutions of 3D isotropic elasticity is proposed. By calculating the determinant of the differential operator matrix obtained from the governing equations of 3D elasticity, the characteristic equation which the characteristic general solution vectors must satisfy is established. Then, by substitution of the characteristic general solution vectors, which satisfy various reduced characteristic equations, into various reduced adjoint matrices of the differential operator matrix, the corresponding fundamental analytical solutions for isotropic 3D elasticity, including Boussinesq-Galerkin (B-G) solutions, modified Papkovich-Neuber solutions proposed by Min-zhong WANG (P-N-W), and quasi HU Hai-chang solutions, can be obtained. Furthermore, the independence characters of various fundamental solutions in polynomial form are also discussed in detail. These works provide a basis for constructing complete and independent analytical trial functions used in numerical methods.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号