首页> 中文期刊> 《中国铸造:英文版》 >Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy

Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy

         

摘要

The composition of Al-Cu-Mn ternary eutectic alloy was chosen to be Al-32.5 wt.%Cu-0.6 wt.%Mn to the Al2 Cu and Al12 Cu Mn2 solid phases within an aluminum matrix(α-Al) from its melt. The Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was directionally solidified at a constant temperature gradient(G=8.1 K·mm^(-1)) with different growth rates, 8.4 to 166.2 μm·s^(-1),by using a Bridgman-type furnace. The eutectic temperature(the melting point) of 547.85 °C for the Al-32.5 wt.%Cu-0.6 wt.%Mn alloy was obtained from the DTA curve of the temperature difference between the test sample and the inert reference sample versus temperature or time. The lamellar spacings(λ) were measured from transverse sections of the samples. The dependencies of lamellar spacings(λAl-Al2 Cu) and microhardness on growth rates were obtained as, λ_(Al-Al2Cu)=3.02 V^(-0.36), HV=153.2(V)^(0.035), HV=170.6(λ)^(-0.09) and HV=144.3+0.82(λ_(AlAl2 Cu))^(-0.50), HV=149.9+53.48 V^(0.25), respectively, for the Al-Cu-Mn eutectic alloy. The bulk growth rates were determined as λ~2_(Al-Al2 Cu)·V = 25.38 μm^3·s^(-1) by using the measured values of λ_(Al-Al2 Cu) and V. A comparison of present results was also made with the previous similar experimental results.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号