首页> 中文期刊> 《中国铸造:英文版》 >Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys

Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys

         

摘要

Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the simulation process, two single-factor influence experiments were designed for columnar crystal structures. The simulation results showed that, when θ_(11) < 45o and θ_A < 45o, as θ_(11) was enlarged, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging grain boundary(GB) presented an increasing inclination to that of preferentially growing dendrites; with increasing θ_A, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging GB exhibited greater deflection,and the secondary dendrites grew with branches; the secondary dendrites on the preferentially growing dendrites at diverging GBs grew along a direction vertical to the growth direction of the preferentially growing dendrites.When θ_A = 45o and θ_(11) = 45o, the secondary dendrites grew in a direction vertical to the growth direction of preferentially growing dendrites. The morphologies of the dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the effect of a grain's orientation angle and azimuth of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites does exist and frequently appears in the practical solidification process.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号