首页> 中文期刊> 《中国地理科学:英文版》 >Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China

Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China

         

摘要

Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetland. Poyang Lake, the largest freshwater lake in China, has been encountering dramatic changes in hydrological conditions in last decade, which greatly influenced the wetland vegetations. To explore the relationships between hydrology and vegetation distribution, water-table depth, soil moisture, species composition, diversity and biomass were measured at a seasonally flooded wetland section at Wucheng National Nature Reserve. Three plant communities, Artemisia capillaris, Phragmites australis and Carex cinerascens communities, were examined which are zonally distributed from upland to lakeshore with decreasing elevation. Canonical correspondence analysis(CCA), spearmen correlation and logistic regression were adopted to analyze the relationships between vegetation characteristics and hydrological variables of water-table depth and soil moisture. Results show that significant hydrological gradient exist along the wetland transect. Water-table demonstrates a seasonal variation and is consistently deepest in A. capillaris community(ranging from –0.5 m above ground to +10.3 m below ground), intermediate in P. australis community(–2.6 m to +7.8 m) and shallowest in C. cinerascens community(–4.5 m to +6.1 m). Soil moisture is lowest and most variable in A. capillaris community, highest and least variable in P. australis community, and intermediate and moderate variable in C. cinerascens community. The CCA ordination indicated that variables of water-table depth and soil moisture are strongly related to community distribution, which explained 81.7% of the vegetation variations. Species diversity indices are significantly positively correlated with soil moisture and negatively correlated with moisture variability, while above- and belowground biomass are positively correlated with moisture. Above- and belowground biomass present Gaussian models along the gradient of average water-table depth in growing season, while species diversity indices show bimodal patterns. The optimal average water-table depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively, and are 2.2 m and 2.4 m for species richness and Shannon-Wiener indices, respectively. Outcomes of this work improved the understandings of the relationship between hydrology and vegetation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号