首页> 中文期刊> 《中国航空学报:英文版》 >Flow field and pressure loss analysis of junction and its structure optimization of aircraft hydraulic pipe system

Flow field and pressure loss analysis of junction and its structure optimization of aircraft hydraulic pipe system

         

摘要

The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed using shear stress transport (SST) model in ANSYS/CFX software. The simulation results identified the variation rule of velocity peak in T-junction with different frequencies and phase-differences, meanwhile, the eddy and velocity shock existed in the corner of the T-junction, and the limit working state was obtained. Although the eddy disappeared in Y-junction, the velocity shock and pressure loss were still too big. To address these faults, an arc-junction was designed. Based on the flow fields of arc-junction, the eddy in the junction corner disappeared and the maximum of velocity peak declined compared to T-and Y-junction. Additionally, 8 series of arc-junction with different radiuses were tested to get the variation rule of velocity peak. Through the computation of the pressure loss of three junctions, the arc-junction had a lowest loss value, and its pressure loss reached the minimum value when the curvature radius is 35.42 mm, meanwhile, the velocity shock has decreased in a low phase.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号