首页> 中文期刊> 《中国航空学报:英文版》 >Prediction of Boundary Layer Transition Based on Modeling of Laminar Fluctuations Using RANS Approach

Prediction of Boundary Layer Transition Based on Modeling of Laminar Fluctuations Using RANS Approach

         

摘要

This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero and non-zero pressure gradients with different freestream turbulence intensities, and transitional flow over a wind turbine blade at a chord Reynolds number of 3×106. Results are presented in terms of skin friction coefficients. Comparison with the experimental data from both tests evidences a good agreement there is between them.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号