首页> 中文期刊> 《催化学报》 >生物油酸酮类模化物与乙醇在HZSM-5上共裂化制备生物汽油

生物油酸酮类模化物与乙醇在HZSM-5上共裂化制备生物汽油

         

摘要

Acids and ketones in biomass pyrolysis oil (bio-oil) can be readily cracked to produce hydrocar-bons. They can also be enriched in the distilled fraction using molecular distillation techniques. To simulate the actual composition of the distilled fraction, the co-cracking performance of mixtures of hydroxypropanone, cyclopentanone, and acetic acid with ethanol in a fixed-bed reactor over an HZSM-5 catalyst was studied. The influences of reaction temperature and pressure on the reactant conversion, selectivity, and composition of the oil phase were investigated. At a low reaction tem-perature of 340 °C, the conversions of acetic acid and ethanol were as low as 67.9%and 74.4%, respectively, and the oil phase had a low hydrocarbon content of 59.8%, with large amounts of oxygenated byproducts. Cracking under atmospheric pressure also generated a low-quality oil phase with a very low selectivity of only 10.8%. Increasing the reaction temperature promoted reactant conversion and improved the deoxygenation efficiency, whereas increasing the reaction pressure significantly promoted hydrocarbon production. The optimum conditions for biogasoline production were 400 °C and 2 MPa. Under these conditions, the reactant conversion reached 100%and the oil phase selectivity was 31.5 wt%. This oil phase consisted entirely of hydrocarbons, 91.5 wt%of which were aromatic hydrocarbons, indicating that the HZSM-5 catalyst had high activity for deoxygenation and aromatization reactions during cracking. In addition, characterization of the spent catalysts and stability tests showed that the catalyst was deactivated after a long reaction time. However, the catalytic activity was recovered by catalyst regeneration.%生物油中酸类和酮类化合物具有较高的裂化活性,而使用分子蒸馏技术能将这些组分富集到蒸出馏分中,因此蒸出馏分相比原始生物油具有更好的裂化特性.为了模拟实际蒸出馏分的组成,本文将生物油模化物(羟基丙酮(HPO)、环戊酮和乙酸)进行配比混合,在固定床反应器上对其与乙醇的共裂化行为进行了研究,考察了不同反应温度和压力对混合反应物的转化率、粗汽油相的选择性和组成的影响.研究发现,当反应温度在340°C时,乙酸和乙醇的转化率分别仅为67.9%和74.4%,同时得到的油相产物中烃类含量仅为59.8%,并含有大量的含氧副产物.常压裂化同样生成了低品质的油相产物,同时油相选择性仅为10.8%.提高反应温度能促进反应物的转化,提高裂化过程中的脱氧效率,而提高反应压力对液体烃类的生成有明显的促进作用.在400°C和2 MPa时,酸类和酮类都有良好的裂化表现,反应物接近完全转化,粗汽油相选择性达到31.5%,且全部由烃类组成,其中芳香烃含量高达91.5%.此外,反应后催化剂表征和稳定性测试结果表明,催化剂在较长时间反应后会失活,但通过催化剂再生能够很好地恢复催化剂活性.

著录项

  • 来源
    《催化学报》 |2014年第5期|709-722|共14页
  • 作者单位

    浙江大学能源清洁利用国家重点实验室;

    浙江杭州310027;

    浙江大学能源清洁利用国家重点实验室;

    浙江杭州310027;

    浙江大学能源清洁利用国家重点实验室;

    浙江杭州310027;

    浙江大学能源清洁利用国家重点实验室;

    浙江杭州310027;

    浙江大学能源清洁利用国家重点实验室;

    浙江杭州310027;

    浙江大学能源清洁利用国家重点实验室;

    浙江杭州310027;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    生物油; 分子蒸馏; 混合模化物; 催化裂化; 生物汽油;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号