首页> 中文期刊> 《中国化学工程学报:英文版》 >Preparation of synthetic rutile via selective sulfation of ilmenite with(NH4)2SO4 followed by targeted removal of impurities

Preparation of synthetic rutile via selective sulfation of ilmenite with(NH4)2SO4 followed by targeted removal of impurities

         

摘要

This paper describes a novel, facile chemical pathway for preparing synthetic rutile from ilmenite. The pathway consists of two primary units, i.e., selectively sulfating ilmenite, which was realized via roasting ilmenite with(NH_4)_2SO_4followed by selective thermal decomposition of the sulfated ilmenite, and targeted leaching of the impurities. The effects of the process parameters were systematically investigated. The results showed that the optimum sulfation conditions were a mass ratio of(NH_4)_2SO_4to ilmenite of 14, temperature of 360 °C, and time of 120 min with a sulfation ratio of ~ 95%. The optimum thermal decomposition conditions were480 °C in N_2 atmosphere, and nearly all Ti OSO_4 were decomposed with co-decomposition of Fe SO_4 of 23%. For acid leaching, the optimum conditions were 2.5 wt% HCl, 98 °C and 120 min. Under those conditions, 94.2% iron was removed with a Ti O_2 dissolution loss b 1%. For alkali leaching, 67% Si O_2 was removed in 5 wt% Na OH at102 °C for 1 h. A synthetic rutile with a Ti O_2 content N 92 wt% and total Mg O + Ca O b 1.5 wt% was obtained.Based on these results, a schematic flowsheet was proposed. Additionally, it was found that the decomposition of Fe SO_4 mixed with Ti OSO_4 under N_2was inhibited due to its oxidation to a higher thermal stability Fe_2(SO_4)_3by oxygen emitted from the decomposition of Ti OSO_4. At the same time, Ti OSO_4 decomposition was promoted due to the immediate in situ consumption of oxygen by Fe SO_4. The synergetic effect might be responsible for the enhanced selectivity of sulfated ilmenite thermal decomposition.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号