首页> 中文期刊> 《中国机械工程学报:英文版》 >Numerical Calculation of Thermal Effect on Cavitation in Cryogenic Fluids

Numerical Calculation of Thermal Effect on Cavitation in Cryogenic Fluids

         

摘要

A key design issue related to the turbopump of the rocket engine is that cavitation occurs in cryogenic fluids when the fluid pressure is lower than the vapor pressure at a local thermodynamic state. Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. To date, fewer investigate the thermal effect on cavitation in cryogenic fluids clearly by the numerical methods due to the difficulty of the heat transfer in the phase change process. In order to study the thermal effect on cavitation in cryogenic fluid, computations are conducted around a 2D quarter caliber hydrofoil in liquid nitrogen and hydrogen respectively by implementing modified Merkle cavitation model, which accounts for the energy balance and variable thermodynamic properties of the fluid. The numerical results show that with the thermal effect, the vapour content in constant location decreases, the cavity becomes more porous and the interface becomes less distinct which shows increased spreading while getting shorter in length. In the cavity region, the temperature around the cavity depresses due to absorb the evaporation latent heat and the saturation pressure drops. When the vapour volume fraction is higher, the temperature depression and pressure depression becomes larger. It is also observed that a slight temperature rise is found above the reference fluid temperature at the cavity rear end attributed to the release of latent heat during the condensation process. When the fluid is operating close to its critical temperature, thermal effects on cavitation are more obviously in both the liquid nitrogen and hydrogen. The thermal effect on cavitation in liquid hydrogen is more distinctly compared with that in liquid nitrogen due to the density ratio, vapour pressure and other variable properties of the fluid. The investigation provides aid for the design of the cryogenic pump of the liquid rocket.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号