首页> 中文期刊> 《中国天然药物:英文版》 >Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and Rho A GTPases and activation of the PI3K/Akt and JNK signaling pathways

Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and Rho A GTPases and activation of the PI3K/Akt and JNK signaling pathways

         

摘要

Tetrandrine(Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes(RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7 A, Tet(0.3, 1 μmol·L-1) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC(against PI3 K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7 A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and Rho A in MH7 A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and Rho A, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号