首页> 中文期刊> 《中国骨科临床与基础研究杂志》 >基于增材制造和凝胶注模成型技术的多孔生物陶瓷支架制备与表征

基于增材制造和凝胶注模成型技术的多孔生物陶瓷支架制备与表征

         

摘要

Objective To investigate a novel method for the preparation of porous bioceramic scaffold ofβ-tricalcium phosphate (TCP) based on additive manufacturing and gel-casting technology. Methods Internal porous structures of scaffold were designed by computer aided design (CAD) software, resin molds were produced by stereolithography, then the bioceramic slurry were cast into the molds, and were sintered to remove the resin mold after hardening. As a result, the porous bioceramic scaffolds of β-TCP were obtained. Characteristics of microcosmic pore structures, mechanical properties and cell compatibility of the scaffolds were examined subsequently. Results Porous structures of β-TCP scaffold were consistent with the original design, with the interval porosity of 45.1% ± 1.2%. and the pore size of 300 to 500 μm; The average compressive strength was 5.3 ± 0.8 MPa;The results of in vitro test showed that osteoblasts were well attached and spread on scaffold, which indicated that the porous scaffold had good biocompatibility. Conclusion A novel method based on additive manufacturing and gel-casting technology has been proposed to produce porous bioceramic scaffold, which can provide scaffolds with complex shape and controlled internal porous structures.%  目的探讨基于增材制造和凝胶注模成型技术的多孔β-磷酸三钙(TCP)生物陶瓷支架的制备方法及其表征。方法利用计算机辅助设计(CAD)软件设计支架内部孔隙结构,通过光固化快速成型技术制造相应的树脂模具,在模具中填充生物材料,待其固化后通过热分解去除树脂模具,然后对所形成的多孔β-TCP支架的微观孔隙结构特征、力学性能以及体外细胞相容性进行检测。结果多孔β-TCP支架孔隙结构与设计结构一致,孔隙率为45.1%±1.2%,孔的尺寸为300~500μm;力学性能测试表明,支架的平均抗压强度为5.3±0.8 MPa;成骨细胞能够在支架上黏附生长,支架具有良好的生物相容性。结论基于增材制造技术和凝胶注模成型工艺的多孔生物陶瓷支架制备方法,可实现支架复杂外形与内部微结构的精确控制和一体化制造。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号