首页> 中文期刊> 《中国物理:英文版》 >Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress

Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress

         

摘要

The negative gate bias stress(NBS)reliability of n-type polycrystalline silicon(poly-Si)thin-film transistors(TFTs)with a distinct defective grain boundary(GB)in the channel is investigated.Results show that conventional NBS degradation with negative shift of the transfer curves is absent.The on-state current is decreased,but the subthreshold characteristics are not affected.The gate bias dependence of the drain leakage current at V_(ds)of 5.0 V is suppressed,whereas the drain leakage current at V_(ds)of 0.1 V exhibits obvious gate bias dependence.As confirmed via TCAD simulation,the corresponding mechanisms are proposed to be trap state generation in the GB region,positive-charge local formation in the gate oxide near the source and drain,and trap state introduction in the gate oxide.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号