首页> 中文期刊> 《中国物理:英文版》 >Synchronization performance in time-delayed random networks induced by diversity in system parameter

Synchronization performance in time-delayed random networks induced by diversity in system parameter

         

摘要

Synchronization rhythm and oscillating in biological systems can give clues to understanding the cooperation and competition between cells under appropriate biological and physical conditions. As a result, the network setting is appreciated to detect the stability and transition of collective behaviors in a network with different connection types. In this paper, the synchronization performance in time-delayed excitable homogeneous random networks(EHRNs) induced by diversity in system parameters is investigated by calculating the synchronization parameter and plotting the spatiotemporal evolution pattern, and distinct impacts induced by parameter-diversity are detected by setting different time delays. It is found that diversity has no distinct effect on the synchronization performance in EHRNs with small time delay being considered. When time delay is increased greatly, the synchronization performance of EHRN degenerates remarkably as diversity is increased. Surprisingly, by setting a moderate time delay, appropriate parameter-diversity can promote the synchronization performance in EHRNs, and can induce the synchronization transition from the asynchronous state to the weak synchronization. Moreover, the bistability phenomenon, which contains the states of asynchronous state and weak synchronization,is observed. Particularly, it is confirmed that the parameter-diversity promoted synchronization performance in time-delayed EHRN is manifested in the enhancement of the synchronization performance of individual oscillation and the increase of the number of synchronization transitions from the asynchronous state to the weak synchronization. Finally, we have revealed that this kind of parameter-diversity promoted synchronization performance is a robust phenomenon.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号