首页> 中文期刊> 《中国物理:英文版》 >Laser cooling of CH molecule: Insights from ab initio study

Laser cooling of CH molecule: Insights from ab initio study

         

摘要

The feasibility of laser cooling a CH molecule is investigated theoretically by employing the ab initio method. The potential energy curves for the five ∧-S states and eight Ω states of CH are determined by the multi-reference configuration interaction with the Davidson corrections(MRCI+Q) level of theory. The results agree well with the available experimental data and other theoretical values. Also, the permanent dipole moments and transition dipole moments of the CH molecule are calculated at the multi-reference configuration interaction(MRCI) level. We find highly diagonally distributed FranckCondon factors(f_(00) = 0.9950 and 0.9998) and branching ratios(R_(00) = 0.983 and 0.993) for the A^2△→ X2Π and C^2∑^+→X^2Π transitions. Moreover, the values of suitable radiative lifetime τ of the A2 A and C^2∑^+ states are evaluated to be9.64×10^(-7) s and 2.02×10^(-7) s, respectively, for rapid laser cooling. A scheme for laser cooling the CH molecule is designed. In the proposed cooling scheme, three wavelengths for A^2△→X^2Π and C^2∑^+→X^2Π transitions are used, and the main pump lasers are λ_(00)=430.86 nm and 313.45 nm, respectively. The feasibility of laser cooling the CH molecules is demonstrated for each of these schemes, and this study offers a theoretical basis for experimental research into preparation of cold CH molecules.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号