首页> 中文期刊> 《中国物理:英文版》 >Improvement of mobility edge model by using new density of states with exponential tail for organic diode

Improvement of mobility edge model by using new density of states with exponential tail for organic diode

         

摘要

The mobility edge (ME) model with single Gaussian density of states (DOS) is simplified based on the recent exper-imental results about the Einstein relationship. The free holes are treated as being non-degenerate, and the trapped holes are dealt with as being degenerate. This enables the integral for the trapped holes to be easily realized in a program. The J–V curves are obtained through solving drift-diffusion equations. When this model is applied to four organic diodes, an obvious deviation between theoretical curves and experimental data is observed. In order to solve this problem, a new DOS with exponential tail is proposed. The results show that the consistence between J–V curves and experimental data based on a new DOS is far better than that based on the Gaussian DOS. The variation of extracted mobility with temperature can be well described by the Arrhenius relationship.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号