首页> 中文期刊> 《中国物理:英文版》 >Resistance switching in oxides with inhomogeneous conductivity

Resistance switching in oxides with inhomogeneous conductivity

         

摘要

Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures.In these experiments a wide range of dielectrics have been studied including binary transition metal oxides,perovskite oxides,chalcogenides,carbon-and silicon-based materials,as well as organic materials.RS phenomena can be used to store information and offer an attractive performance,which encompasses fast switching speeds,high scalability,and the desirable compatibility with Si-based complementary metal--oxide-semiconductor fabrication.This is promising for nonvolatile memory technology,i.e.,resistance random access memory (RRAM).However,a comprehensive understanding of the underlying mechanism is still lacking.This impedes faster product development as well as accurate assessment of the device performance potential.Generally speaking,RS occurs not in the entire dielectric but only in a small,confined region,which results from the local variation of conductivity in dielectrics.In this review,we focus on the RS in oxides with such an inhomogeneous conductivity.According to the origin of the conductivity inhomogeneity,the RS phenomena and their working mechanism are reviewed by dividing them into two aspects:interface RS,based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer,and bulk RS,realized by the formation,connection,and disconnection of conductive channels in the oxides.Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.

著录项

  • 来源
    《中国物理:英文版》 |2013年第6期|1-18|共18页
  • 作者单位

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    I.Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen, Germany;

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    I.Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen, Germany;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号