首页> 中文期刊> 《中国物理快报:英文版》 >Rayleigh Doppler Lidar for Higher Tropospheric and Stratospheric Wind Observation

Rayleigh Doppler Lidar for Higher Tropospheric and Stratospheric Wind Observation

         

摘要

A mobile molecular Doppler wind lidar (DWL) based on the double-edge technique is described for wind measurement from 10 km to 40 km altitude.Two edge filters located in the wings of the thermally broadened molecular backscattered signal spectrum at 355 nm are employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity.The lidar operates at 355 nm with a 45 cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing.Intercomparison experiments of the lidar wind profile measurement are performed with collocated pilot balloon.The results show that the standard deviation of wind speed and direction are less than 10m/s and 30° in the 5-40 km altitude range,respectively.The small mean difference and normal distribution between DWL and pilot balloon data and the transient eddy of the west-wind jet observed demonstrate that the DWL consistently measures the wind with acceptable random errors.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号