首页> 中文期刊> 《中国物理快报:英文版》 >Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi_2Sr_2CaCu_2O_(8+δ) Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi_2Sr_2CaCu_2O_(8+δ) Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

         

摘要

We carry out detailed momentum-dependent and temperature-dependent measurements on Bi_2Sr_2CaCu_2O_(8+δ)(Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angleresolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212(T_c= 91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form(cos(2Φ)). It can be alternatively fitted by including a high-order term(cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogap temperature without a signature of band reorganization which is distinct from that found in Bi_2Sr_2CuO_(6+δ) superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors.These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号