首页> 中文期刊> 《中国物理快报:英文版》 >Effects of Layer Deposition Sequence on Microstructure and Magnetostatic Coupling of Spin-Valves with Amorphous CoNbZr Layer

Effects of Layer Deposition Sequence on Microstructure and Magnetostatic Coupling of Spin-Valves with Amorphous CoNbZr Layer

         

摘要

We investigate spin-valve sandwiches with thin amorphous CoNbZr as soft layers. The magnetoresistance (MR), microstructure, and magnetostatic coupling are studied in these sandwiches with different layer deposition sequences. For the CoNbZr/Cu/Co sandwich, the CoNbZr underlayer provides a smoother surface on which smooth Cu and Co layers can subsequently grow. The Cu spacer is dense and pinholes-free, leading to a good ""spin valve"" effect with a larger MR ratio of 3.8%. For the Co/Cu/CoNbZr sandwich, however, the Cu spacer is rough and pinholes were observed, which could induce a direct ferromagnetic coupling. Correlated rougher surfaces on both the sides of the Cu spacer were also observed, giving rise to an ""orangepeel"" coupling of about O. 105 erg/cm^-2. This strong ferromagnetic coupling in Co/Cu/CoNbZr results in a lower MR ratio of 1.6%. Moreover, upon proper thermal annealing, the CoNbZr/Cu/Co has a larger MR enhancement and a superior thermal stability to 350℃ due to the dense and homogenous structure in the spacer layer.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号