首页> 中文期刊> 《理论物理通讯:英文版》 >Kinetic Instability of Anisotropic Drift Wave Accompanied by Field Aligned Currents in Solar Coronal Loop

Kinetic Instability of Anisotropic Drift Wave Accompanied by Field Aligned Currents in Solar Coronal Loop

         

摘要

Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold value of u0/v A is ~ 3.0 for growth and the corresponding current filling factor ~ 10-3-10-4. Below this value we are no longer in the kinetic regime.The coronal loops also have short-scale density gradients within each loop. The electron resonance in the presence of density gradient causes the drift mode to grow. We study the effect of these two free energy sources, the electron drift and the density gradient, in the presence of temperature anisotropy T⊥_α > T∥_α. These effects simultaneously exist in the coronae. Using gyrokinetic theory, we investigate the influence of these effects, examine how they interplay with each other and study the consequent growth of the magnetosonic wave. We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents. The temperature anisotropy with chosen signatures causes further stabilizing effect. The results may prove useful to study the heating mechanism of solar coronal loops, acceleration of particles and confinement of particles in the thermonuclear reactors.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号