首页> 中文期刊> 《计算机工程》 >基于提示学习的维吾尔语文本分类研究

基于提示学习的维吾尔语文本分类研究

         

摘要

维吾尔语属于低资源语言和黏着性语言,现有维吾尔语文本分类方法缺少足够的语料来训练维吾尔语预训练模型。因此,维吾尔语无法基于预训练模型提取有效的句向量信息。现有的文本分类方法利用深度学习模型提取词向量,然而,维吾尔语具有特征稀疏且维度偏高的特点,使得其在文本分类上的效果较差。为此,提出基于提示学习的维吾尔语文本分类方法。基于提示学习,采用多语言预训练模型Cino构造不同的模板,利用模型的掩码预测能力对不同的掩码位置进行预测。为避免掩码预测的词汇信息具有多样性,将模板掩盖掉的词向量代替整体的句向量,利用掩码模型的预测能力,以有限大小的向量表示当前句子的语义信息,将下游任务靠近模型的预训练任务,减少在微调阶段两者不同所造成的影响。在爬取维吾尔语网站所构建新闻数据集上进行的文本分类实验结果表明,相比Cino微调预训练模型,融合提示学习的Cino模型的F1值最高可达到92.53%,精准率和召回率分别提升了1.79、1.04个百分点,具有更优的维吾尔语文本分类效果。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号