首页> 中文期刊> 《应用科学(英文)》 >A Parametric Study of Mechanical Cross-Coupling in Parallel-Kinematics Piezo-Flexural Nano-Positioning Systems

A Parametric Study of Mechanical Cross-Coupling in Parallel-Kinematics Piezo-Flexural Nano-Positioning Systems

         

摘要

Piezo-electric nano-positioning stages are being widely used in applications in which precision and accuracy in the order of nano, and high scanning speeds are paramount. This paper presents a Finite Element Analysis (FEA) of the parallel piezo-flexural nano-positioning (PPNP) stages to investigate motion interference between their different axes. Cross-coupling is one of the significant contributors to undesirable runouts in the precision positioning of PPNP actuators. Using ABAQUS/CAE 2018 software, a 3D model of a PPNP stage was developed. The model consists of a central elastic body connected to a fixed frame through four flexural hinges. A cylindrical stack of multiple piezoelectric disks is placed between the moving central body and the fixed frame. Extensive simulations were carried out for three different friction coefficients in the piezoelectric disks’ contact surfaces, different frame materials, and different geometrical configurations of the stage and the hinges. As a result, it was observed that the primary root cause of the mechanical cross-coupling effect could be realized in the combination of the slip and rotation of the piezoelectric disks due to their frictional behavior with the stage moving in the tangential direction, concurrent with changes in the geometry of the stage.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号