首页> 中文期刊> 《可持续生物质能源系统(英文)》 >Hydrothermal Liquefaction of Water Hyacinth: Effect of Process Conditions and Magnetite Nanoparticles on Biocrude Yield and Composition

Hydrothermal Liquefaction of Water Hyacinth: Effect of Process Conditions and Magnetite Nanoparticles on Biocrude Yield and Composition

         

摘要

cqvip:In this work, an efficient way of converting the water hyacinth to biocrude oil using magnetite nanoparticles (MNPs) as potential catalysts was demonstrated for the first time. MNPs were synthesised by co-precipitation and used in the hydrothermal liquefaction (HTL) of water hyacinth at different reaction conditions (temperature, reaction time, MNPs to biomass ratio and biomass to water ratio). The best reaction conditions were as follows: temperature— 320, reaction time—60 minutes, MNPs to biomass ratio – 0.2 g/g and biomass to water ratio – 0.06 g/g. HTL in presence of MNPs gave higher biocrude yields compared to HTL in absence of MNPs. The highest biocrude yield was 58.3 wt% compared to 52.3 wt% in absence of MNPs at similar reaction conditions. The composition of biocrude oil was analysed using GC-MS and elemental analysis. GC-MS results revealed that HTL in presence of MNPs led to an increase in the percentage area corresponding to hydrocarbons and a reduction in the percentage area corresponding to oxygenated compounds, nitrogenated compounds and sulphur compounds. Elemental analysis revealed an increase in the hydrogen and carbon content and a reduction in the nitrogen, oxygen and sulphur content of the biocrude when HTL was done in presence of MNPs compared to HTL in absence of MNPs. The nanoparticles were recovered from the biochar by sonication and magnetic separation and recycled. The recycled MNPs were still efficient as HTL catalysts and were recycled five times. The application of MNPs in the HTL of water hyacinth increases the yield of biocrude oil, improves the quality of biocrude through removal of hetero atoms, oxygen and sulphur compounds and is a potentially economical alternative to the traditional petroleum catalysts since MNPs are cheaper, widely available and can be easily recovered magnetically and recycled. This will potentially lead to an economical, environmentally friendly and sustainable way of producing biofuels from biomass.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号