首页> 中文期刊> 《现代物理(英文)》 >Glitching Pulsars: Unraveling the Interactions of General Relativistic and Quantum Fields in the Strong Field Regimes

Glitching Pulsars: Unraveling the Interactions of General Relativistic and Quantum Fields in the Strong Field Regimes

         

摘要

In this article we modify our previous model for the mechanisms underlying the glitch phenomena in pulsars. Accordingly, pulsars are born with embryonic cores that are made of purely incompressible superconducting gluon-quark superfluid (henceforth SuSu-cores). As the ambient medium cools and spins down due to emission of magnetic dipole radiation, the mass and size of SuSu-cores must grow discretely with time, in accordance with the Onsager-Feynmann analysis of superfluidity. Here we argue that the spacetime embedding glitching pulsars is dynamical and of bimetric nature: inside SuSu-cores the spacetime must be flat, whereas the surrounding region, where the matter is compressible and dissipative, the spacetime is Schwarzschild. It is argued here that the topological change of spacetime is derived by the strong nuclear force, whose operating length scales are found to increase with time to reach O (1) cm at the end of the luminous lifetimes of pulsars. The here-presented model is in line with the recent radio- and gravitational wave observations of pulsars and merger of neutron stars.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号