首页> 中文期刊> 《环境保护(英文)》 >Use of Environmental Sequence Stratigraphy (ESS) as an Environmental Forensic Tool to Identify Chlorinated Solvent Sources at a Complex Site in Silicon Valley, California

Use of Environmental Sequence Stratigraphy (ESS) as an Environmental Forensic Tool to Identify Chlorinated Solvent Sources at a Complex Site in Silicon Valley, California

         

摘要

This paper presents a case study for a complex contaminated groundwater site impacted by a historical release of chlorinated solvents in Silicon Valley, California. The original conceptual site model (CSM) inferred a contaminant migration pathway based on the groundwater gradient interpreted from groundwater elevation data, which is based on the underlying assumption that the subsurface conditions are homogeneous. However, the buried channel deposits render the underlying geology highly heterogeneous, and this heterogeneity plays a significant role in the subsurface migration of contaminants. Chemical fingerprinting evidence suggested that contamination at the downgradient property boundary was related to an off-site contaminant source. But, this alone was not a compelling argument. However, Environmental Sequence Stratigraphy (ESS), a geology-based environmental forensic technique, was applied to define the permeability architecture or the “plumbing” that controls subsurface fluid flow and contaminant migration. First, the geologic and depositional setting was synthesized based on regional geologic data, and representative facies models were identified for the site. Second, the existing CSM and site lithology data were reviewed and existing lithology data were graphically presented to display vertical grain-size patterns. This analysis focused on the nexus between the depositional environment and the site-specific subsurface data resulting in correlations/interpretations between and beyond data points that are based on established stratigraphic principles. The depositional environment results in buried river channels as the primary control on subsurface fluid flow, which defines hydrostratigraphic units (or HSUs). Finally, a hydrostratigraphic CSM that includes maps and cross sections was constructed to depict the HSUs present as a framework to integrate hydro-geology and chemistry data. This study demonstrates that: 1) Highly per-meable buried river channel deposits control subsurface fluid flow and contaminant transport, and have distinct chemical constituents and concentrations (i.e., they represent distinct HSUs), 2) Mapping of such HSUs is feasible with existing boring log data, 3) In settings such as the Santa Clara Valley where groundwater flow is governed by subsurface channel deposits, a hydrostratigraphic mapping approach is superior to a depth-based aquifer zonation approach, and 4) For heterogeneous subsurface, a detailed geology-based definition of the subsurface is an integral component of an environmental forensic analyses to determine contaminant source(s) and pathways.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号