首页> 中文期刊> 《林学期刊(英文)》 >Microbial Compositions and Enzymes of a Forest Ecosystem in Alabama: Initial Response to Thinning and Burning Management Selections

Microbial Compositions and Enzymes of a Forest Ecosystem in Alabama: Initial Response to Thinning and Burning Management Selections

         

摘要

Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’s Bankhead National Forest (BNF) to soil microbial components and overall forest soil health are unknown. We hypothesized that microbial assemblages and enzyme activities are continuously changing in forest ecosystems especially due to management selections. Therefore, the objective of this study was to assess changes in microbial community compositions (fungal vs bacterial populations) via fatty acid methyl ester (FAME) profiling and several enzyme activities (β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, xylanase, laccase, and manganese peroxidase) critical to soil organic matter (SOM) dynamics and biogeochemical cycling. In this forest, heavily-thinned plots without burning or less frequent burning treatments seemed to provide more favorable conditions (higher pH and lower C:N ratios) for C and N mineralization. This may explain a slight increase (by 12%) detected in fungi:bacteria (F:B) ratio in the heavily-thinned plots relative to the control. Thinned (lightly and heavily) plots showed greater ligninolytic (laccase and MnP) activities and lower β-glucosidase and β-glucosaminidase activities compared to the no-thinned plots probably due to increase depositions of woody recalcitrant C materials. We observed significant but negative correlations between the ligninolytic laccase and manganese peroxidase (Lac and MnP) enzymes respectively, with MBC (?0.45* and ?0.68** respectively) and MBN (?0.43* and ?0.65** respectively). Prescribed burning treatment reduced microbial biomass C and N of the 9-yr burned plot/lightly thinned plotsprobably due to depletion of labile C sources with the high temperatures, leaving mostly recalcitrant C sources as available soil substrates. Gram-positive bacteria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the microbial compositions. This study bridges knowledge gaps in our understanding of microbial community compositions and enzyme-mediated processes in repeatedly burned and thinned forest ecosystems.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号