首页> 中文期刊> 《矿物质和材料特性和工程(英文)》 >Analysis of Tool Wear Rate in Drilling Operation using Scanning Electron Microscope (SEM)

Analysis of Tool Wear Rate in Drilling Operation using Scanning Electron Microscope (SEM)

         

摘要

Hole making had long been recognized as the most prominent machining process, requiring specialized techniques to achieve optimum cutting condition. Drilling can be described as a process where a multi-point tool is used to remove unwanted materials to produce a desired hole. It broadly covers those methods used for producing cylindrical holes in the work piece. However, high production machining and drilling with high cutting velocity, feed and depth of cut is inherently associated with generation of large amount of heat and high cutting temperature. Such high cutting temperature not only reduces dimensional accuracy and tool life but also impairs the surface integrity of the product. In this case, high pressure coolant (HPC) is very effective to reduce temperature. When temperature is increased a large amount of tool wear appears at the drill bit. In this situation, high temperature either affects roundness of the hole or chip shape and color of chip. HPC is applied in the same direction as the drill bit. HPC has reduced temperature as well as improving roundness and also provide lubrication in the tool tip and surface interface.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号