首页> 中文期刊> 《现代物理(英文)》 >Slow Plasma Dynamo Driven by Electric Current Helicity in Non-Compact Riemann Surfaces of Negative Curvature

Slow Plasma Dynamo Driven by Electric Current Helicity in Non-Compact Riemann Surfaces of Negative Curvature

         

摘要

Boozer addressed the role of magnetic helicity in dynamos [1]. He pointed out that the magnetic helicity conservation implies that the dynamo action is more easily attainable if the electric potential varies over the surface of the dynamo. This provided motivated us to investigate dynamos in Riemannian curved surfaces [2]. Thiffeault and Boozer [3] discussed the onset of dissipation in kinematic dynamos. In this paper, when curvature is constant and negative, a simple laminar dynamo solution is obtained on the flow topology of a Poincare disk, whose Gauss curvature is K = –1. By considering a laminar plasma dynamo [4] the electric current helicity λ ≈ 2.34 m–1 for a Reynolds magnetic number of Rm ≈ 210 and a growth rate of magnetic field |γ| ≈ 0.022 are obtained. Negative constant curvature non-compact H2 manifold, has also been used in onecomponent electron 2D plasma by Fantoni and Tellez [5]. Chicone et al. (CMP (1997)) showed fast dynamos can be supported in compact H2. PACS: 47.65.Md.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号