首页> 中文期刊> 《电力能源(英文)》 >Numerical Analysis of the RAP Characteristics of a Catamaran Vessel for Niger Delta Pliability

Numerical Analysis of the RAP Characteristics of a Catamaran Vessel for Niger Delta Pliability

         

摘要

A proper characterization of catamarans performance in relation to demi-hull separation ratio (Sc/L) is imperative for optimal design and applications. Resistance, propulsion and good sea-keeping characteristics for various demi-hull separation ratios at different operating conditions are prime considerations. This work evaluates the Resistance and Propulsion (RAP) characteristics of a 72 m long catamaran for various values of Sc/L (0.3, 0.4 and 0.5). Both physical models and numerical methods are implemented for the analysis. The analysis shows that the frictional resistance (RF) of catamaran is parabolic and slightly higher than those of monohulls. However, catamarans have superior sea-keeping performance. The RF of catamaran dominates the total resistance (RT) at low speeds;however, at high Froude number (Fn > 0.25), wave-making resistance (Rw) becomes dominant, especially during humps. Consequently, the RT-curve and the effective power PE-curve oscillate in rhythm with the Rw-curve as the velocity increases. Again, the effect of residuary resistance interference due to demi-hulls separation ratio is marginal, except during humps. Also, four speed-regimes are identified such as: 1) Low-speed (Fn st hump (0.23 nd hump, high-speed (Fn > 0.60). The catamaran PE for Fn > 0.6 is very high and uneconomical. Therefore, for optimal performance, catamarans should have service speed limits not exceeding Fn = 0.6.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号