首页> 中文期刊> 《工程(英文)》 >3D Printing of Cell-Container-Like Scaffolds for Multicell Tissue Engineering

3D Printing of Cell-Container-Like Scaffolds for Multicell Tissue Engineering

         

摘要

The development of an engineered non-contact multicellular coculture model that can mimic the in v iv o cell microenvironment of human tissues remains challenging.In this study,we successfully fabricated a cell-container-like scaffold composed of p-tricalcium phosphate/hydroxyapatite(p-TCP/HA)bioceramic that contains four different pore structures,including triangles,squares,parallelograms,and rectangles,by means of three-dimensional(3D)printing technology.These scaffolds can be used to simultaneously culture four types of cells in a non-contact way.An engineered 3D coculture model composed of human bone-marrow-derived mesenchymal stem cells(HBMSCs),human umbilical vein endothelial cells(HUVECs),human umbilical vein smooth muscle cells(HUVSMCs),and human dermal fibroblasts(HDFs)with a spatially controlled distribution was constructed to investigate the individual or synergistic effects of these cells in osteogenesis and angiogenesis.The results showed that three or four kinds of cells cocultured in 3D cell containers exhibited a higher cell proliferation rate in comparison with that of a single cell type.Detailed studies into the cell-cell interactions between HBMSCs and HUVECs revealed that the 3D cell containers with four separate spatial structures enhanced the angiogenesis and osteogenesis of cells by amplifying the paracrine effect of the cocultured cells.Furthermore,the establishment of multicellular non-contact systems including three types of cells and four types of cells,respectively,cocultured in 3D cell containers demonstrated obvious advantages in enhancing osteogenic and angiogenic differentiation in comparison with monoculture modes and two-cell coculture modes.This study offers a new direction for developing a scaffold-based multicellular non-contact coculture system for tissue regeneration.

著录项

  • 来源
    《工程(英文)》 |2020年第11期|P.1276-1284|共9页
  • 作者单位

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 ChinaCenter of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 ChinaCenter of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 ChinaCenter of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 ChinaCenter of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 ChinaCenter of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

    Center for Translational Bone Joint and Soft Tissue Research.University Hospital Carl Gustav Carus&Faculty of Medicine Technische Universitat Dresden Dresden 01307 Germany;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 ChinaCenter of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类 肿瘤学;
  • 关键词

    3D cell containers; Non-contact multicellular coculture; Interactions; Angiogenesis; Osteogenesis;

    机译:3D细胞容器;非接触式多细胞共培育;相互作用;血管生成;骨发生;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号