首页> 中文期刊> 《绿色能源与环境(英文)》 >Techno-economical evaluation of membrane based biogas upgrading system:A comparison between polymeric membrane and carbon membrane technology

Techno-economical evaluation of membrane based biogas upgrading system:A comparison between polymeric membrane and carbon membrane technology

         

摘要

A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre(CHF) membrane and compare with a commercially available polymeric membrane(polyimide) through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO_2, O_2, N_2. The CHF membrane was modified through oxidation, chemical vapour deposition(CVD) and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres(PORCHFs) significantly exceeded CHF performance showing higher CO_2 permeance(0.021 m^3(STP)/m^2 h bar) and CO_2/CH_4 selectivity of 246(5 bar feed vs 50 mbar permeate pressure). The highest performance recorded through experiments(CHF and PORCHF) was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS.A 300 Nm^3/h mixture of CO_2/CH_4 containing 30-50% CO_2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover99.5% CH_4 with 97.5% purity. Net present value(NPV) was calculated for base case and optimal pressure(50 bar for CHF and PORCHF). The results indicated that recycle ratio(recycle/feed) ranged from 0.2 to 10, specific energy from 0.15 to 0.8(kW/Nm^3 feed) and specific membrane area from 45 to 4700(m^2/Nm^3 feed). The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm^3 and a lifetime of 15 years, the technoeconomic analysis showed that payback time for the best cascade is 1.6 months.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号