首页> 中文期刊> 《矿物冶金与材料学报:英文版》 >Microstructure and mechanical properties of spark plasma sintered Ti–Mo alloys for dental applications

Microstructure and mechanical properties of spark plasma sintered Ti–Mo alloys for dental applications

         

摘要

Ti–Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental powders.The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were investigated.For each Mo concentration,the optimum sintering temperature was determined,resulting in a fully dense and uniform microstructure of the alloy.The optimized sintering temperature gradually increases in the range of 1100–1300°C with the increase in Mo content.The microstructure of the Ti–(6–12)Mo alloy consists of acicular α phase surrounded by equiaxed grains of β phase,while the Ti–14Mo alloy only contains single β phase.A small amount of fine α lath precipitated from β phase contributes to the improvement in strength and hardness of the alloys.Under the sintering condition at 1250°C,the Ti–12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472,the compressive yield strength of 2182 MPa,the compression rate of 32.7%,and the elastic modulus of 72.1 GPa.These results demonstrate that Ti–Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号