首页> 中文期刊> 《农业科学学报:英文版》 >Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays

Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays

         

摘要

Maize is one of the most important crops worldwide,but it suffers from salt stress when grown in saline-alkaline soil.There is therefore an urgent need to improve maize salt tolerance and crop yield.In this study,the SsNHX1 gene of Suaeda salsa,which encodes a vacuolar membrane Na^+/H^+ antiporter,was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation.Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%,indicating enhanced salt tolerance.The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate (79%)and a reduction in seminal root length inhibition.Moreover,transgenic plants under salt stress exhibited less physiological damage.SsNHXl-overexpressing transgenic maize accumulated more Na^+ and K^+ than wild-type (WT)plants particularly in the leaves,resulting in a higher ratio of K^+/Na^+ in the leaves under salt stress.This result revealed that the improved salt tolerance of SsNHXl-overexpressing transgenic maize plants was likely attributed to SsNHXl-mediated localization of Na^+ to vacuoles and subsequent maintenance of the cytosolic ionic balance.In addition,SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants,as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment.Therefore,based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.

著录项

  • 来源
    《农业科学学报:英文版》 |2018年第12期|P.2612-2623|共12页
  • 作者单位

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

    [1]Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region;

    Ministry of Agriculture/Maize Research Institute;

    Sichuan Agricultural University;

    Chengdu 611130;

    P.R.China;

  • 原文格式 PDF
  • 正文语种 CHI
  • 中图分类 农业科学;
  • 关键词

    Na^+/H^+antiporter; salt stress; K^+/Na^+; drought stress; gene transformation;

    机译:Na ^ + / H ^ +反向配体;盐胁迫;K ^ + / Na ^ +;干旱胁迫;基因转化;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号