首页> 中文期刊> 《北京理工大学学报:英文版》 >Propagation and Coalescence of Blast-Induced Cracks in PMMA Material Containing an Empty Circular Hole Under Delayed Ignition Blasting Load by Using the Dynamic Caustic Method

Propagation and Coalescence of Blast-Induced Cracks in PMMA Material Containing an Empty Circular Hole Under Delayed Ignition Blasting Load by Using the Dynamic Caustic Method

         

摘要

In this paper,dynamic caustic method is applied to analyze the blast-induced crack propagation and distribution of the dynamic stress field around an empty circular hole in polymethyl methacrylate(PMMA)material under delayed ignition blasting loads.The following experimental results are obtained.(1)In directional-fracture-controlled blasting,the dynamic stress intensity factors(DSIFs)and the propagation paths of the blast-induced cracks are obviously influenced by the delayed ignition.(2) The circular hole situated between the two boreholes poses a strong guiding effect on the coelesence of the cracks,causing them to propagate towards each other when cracks are reaching the circular hole area.(3)Blast-induced cracks are not initiated preferentially because of the superimposed effect from the explosive stress waves on the cracking area.(4) By using the scanning electron microscopy(SEM)method,it is verified that the roughness of crack surfaces changes along the crack propagation paths.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号