首页> 中文期刊> 《仿生工程学报(英文版)》 >A Trot and Flying Trot Control Method for Quadruped Robot Based on Optimal Foot Force Distribution

A Trot and Flying Trot Control Method for Quadruped Robot Based on Optimal Foot Force Distribution

         

摘要

In order to enhance the dynamic motion capability of the bionic quadruped robot,a flying trot gait control method based on full-scale virtual model and optimal plantar force distribution is proposed.A stable flying trot gait is accomplished by mapping the robot torso motion to the foot trajectory.The force distribution calculated by the torso virtual model is converted into a quadratic optimization problem and solved in real time by the open source library Gurobi.The transition between the trot gait and the flying trot gait is achieved by coordinating leg motion phases.The results of the dynamic simulation verify that the proposed method can realize the 3D stable flying trot gait.Compared against the trot gait,the flying trot gait can improve the speed of the quadruped robot.Combine the trot gait and the flying trot gait,the quadruped robot can move efficiently and adapt to complex terrains.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号