首页> 中文期刊> 《农业科学学报:英文版》 >Effects of Zinc Deficiency and Drought on Plant Growth and Metabolism of Reactive Oxygen Species in Maize (Zea mays L.)

Effects of Zinc Deficiency and Drought on Plant Growth and Metabolism of Reactive Oxygen Species in Maize (Zea mays L.)

         

摘要

The combinative effects of applied zinc (Zn) and soil moisture on the plant growth, Zn uptake, and the metabolism of reactive oxygen species (ROS) in maize (Zea mays L.) plants were examined through two pot experiments under greenhouse conditions. Maize variety Zhongdan 9409 was used. In experiment 1, maize plants were grown in cumulic cinnamon soil with five Zn treatments (0, 3.0, 9.0, 27.0, and 81.0 mg Zn kg-1 soil). Three treatments of soil moisture including serious drought, mild drought, and adequate water supply were set at 30-35%, 40-45%, and 70-75% (w/w) of soil saturated water content, respectively. Soil saturated water content was 36% (w/w). The dry matter weights of shoots were enhanced by Zn application and adequate water supply. There was no apparent difference in plant growth among Zn application rates from 3.0 to 81.0 mg Zn kg-1 soil. The increases of plant growth and Zn uptake due to Zn application were found more significant under well-watered condition than under drying condition. In experiment 2, two levels of Zn (0 and 5.0 mg Zn kg-1 soil) and soil moisture regimen (40-45% and 70-75% of soil saturated water content, respectively) were set. Zn deficiency or water stress resulted in higher concentrations of O2-· and malondiadehyde in the first fully expanded leaves. Zn deficiency lowered the activity of superoxide dismutase (SOD, EC 1.15.1.1) in leaves. Drought stress increased SOD activity in leaves regardless ofZn supply. The activity of guaiacol peroxidase (POD, EC1.11.1.11) was found to be enhanced by Zn supply only in well-watered leaves. Zinc deficiency or water stress had little effect on the activity of catalase (CAT, EC 1.11.1.6). The higher ROS level in early maize leaves due to water stress seemed not to be alleviated or lowered partially by Zn application. However, Zn fertilizer was recommended to apply to maize plants irrigated or supplied with adequate water, otherwise Zn deficiency would reduce the water use for plant biomass production.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号