首页> 外文期刊>植物学报(英文版) >Changes of Photosystem Ⅱ Electron Transport in the Chlorophyll-deficient Oilseed Rape Mutant Studied by Chlorophyll Fluorescence and Thermoluminescence
【24h】

Changes of Photosystem Ⅱ Electron Transport in the Chlorophyll-deficient Oilseed Rape Mutant Studied by Chlorophyll Fluorescence and Thermoluminescence

机译:叶绿素荧光和热释光研究叶绿素缺乏型油菜油菜突变体中光系统Ⅱ电子传递的变化

获取原文
获取原文并翻译 | 示例
           
机译:The photosystem Ⅱ (PSII) complex of photosynthetic membranes comprises a number of chlorophyll-binding proteins that are important to the electron flow. Here we report that the chlorophyll b-deficient mutant has de creased the amount of light-harvesting complexes with an increased amount of some core polypeptides of PSII,including CP43 and CP47. By means of chlorophyll fluorescence and thermoluminescence, we found that the ratio of Fv/Fm, qP and electron transport rate in the chlorophyll b-deficient mutant was higher compared to the wild type.In the chlorophyll b-deficient mutant, the decay of the primary electron acceptor quinones (QA-) reoxidation was decreased, measured by the fluorescence. Furthermore, the thermolumlnescence studies in the chlorophyll b deficient mutant showed that the B band (S2/S3QB-) decreased slightly and shifted up towards higher temperatures.In the presence of dichlorophenyl-dimethylurea, which is inhibited in the electron flow to the second electron acceptor quinines (QB) at the PSII acceptor side, the maximum of the Q band (S2QA-) was decreased slightly and shifted down to lower temperatures, compared to the wild type. Thus, the electron flow within PSll of the chlorophyll b-deficient mutant was down-regulated and characterized by faster oxidation of the primary electron acceptor quinine QA- via forward electron flow and slower reduction of the oxidation S states.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号