首页> 中文期刊> 《哈尔滨工程大学学报:英文版》 >Numerical Study of a Novel Procedure for Installing the Tower and Rotor Nacelle Assembly of Offshore Wind Turbines Based on the Inverted Pendulum Principle

Numerical Study of a Novel Procedure for Installing the Tower and Rotor Nacelle Assembly of Offshore Wind Turbines Based on the Inverted Pendulum Principle

         

摘要

Current installation costs of offshore wind turbines(OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study(based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies(RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel(HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV(in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV(which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting(response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather-and water depth-sensitivity, this novel procedure is demonstrated to be viable.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号