首页> 中文期刊> 《防务技术:英文版》 >Numerical studies on four-engine rocket exhaust plume impinging on flame deflectors with afterburning

Numerical studies on four-engine rocket exhaust plume impinging on flame deflectors with afterburning

         

摘要

This paper studies the four-engine liquid rocket flow field during the launching phase.Using threedimensional compressible Navier-Stokes equations and two-equation realizable k-epsilon turbulence model,an impact model is established and flow fields of plume impinging on the two different shapes of flame deflectors,including wedge-shaped flame deflector and cone-shaped flame deflector,are calculated.The finite-rate chemical kinetics is used to track chemical reactions.The simulation results show that afterburning mainly occurs in the mixed layer.And the region of peak pressure occurs directly under the rocket nozzle,which is the result of the direct impact of exhaust plume.Compared with the wedgeshaped flame deflector,the cone-shaped flame deflector has great performance on guiding exhaust gas.The wedge-shaped and cone-shaped flame deflectors guide the supersonic exhaust plume away from the impingement point with two directions and circumferential direction,respectively.The maximum pressure and temperature on the wedge-shaped flame deflector surface are 37.2%and 9.9%higher than those for the cone-shaped flame deflector.The results provide engineering guidance and theoretical significance for design in flame deflector of the launch platforms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号