首页> 中文期刊> 《防务技术:英文版》 >Experimental investigation for machinability aspects of graphene oxide/carbon fiber reinforced polymer nanocomposites and predictive modeling using hybrid approach

Experimental investigation for machinability aspects of graphene oxide/carbon fiber reinforced polymer nanocomposites and predictive modeling using hybrid approach

         

摘要

This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamometer was employed for the evaluation of Thrust Force and Torque.The image processing technique computes the delamination.Response surface methodology(RSM)considers the parameters,namely,drilling speed(S),feed rate(F),Graphene Oxide wt.%(G)in designing the experimentation array.Principal component analysis(PCA)was used to tackle the response priority weight during the combination of multiple functions.Analysis of variance(ANOVA)scrutinized the influence of parameters and intended the regression models to predict the response.GR-PCA evaluated the optimal parametric setting and remarked that feed rate acts as the most predominant factor.The higher feed rate and wt.%of G is responsible for surface damages like fiber pull-out,fiber fracture and cracks.A significant improvement in drilling responses has been obtained and also validates through confirmatory test and microstructure investigations.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号