首页> 中文期刊> 《光:科学与应用(英文版)》 >Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars

Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars

         

摘要

Optical microcavities have widely been employed to enhance either the optical excitation or the photon emission processes for boosting light-matter interactions at the nanoscale.When both the excitation and emission processes are simultaneously facilitated by the optical resonances provided by the microcavities,as referred to the dual-resonance condition in this article,the performances of many nanophotonic devices approach to the optima.In this work,we present versatile accessing of dual-resonance conditions in deterministically coupled quantum-dot(QD)-micropillars,which enables emission from neutral exciton(X)—charged exciton(CX)transition with improved single-photon purity.In addition,the rarely observed up-converted single-photon emission process is achieved under dual-resonance conditions.We further exploit the vectorial nature of the high-order cavity modes to significantly improve the excitation efficiency under the dual-resonance condition.The dual-resonance enhanced light-matter interactions in the quantum regime provide a viable path for developing integrated quantum photonic devices based on cavity quantum electrodynamics(QED)effect,e.g.,highly efficient quantum light sources and quantum logical gates.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号