首页> 中文期刊> 《光:科学与应用(英文版)》 >Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface

Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface

         

摘要

Light beams with a helical phase-front possess orbital angular momentum along their direction of propagation in addition to the spin angular momentum that describes their polarisation.Until recently,it was thought that these two‘rotational’motions of light were largely independent and could not be coupled during light–matter interactions.However,it is now known that interactions with carefully designed complex media can result in spin-to-orbit coupling,where a change of the spin angular momentum will modify the orbital angular momentum and vice versa.In this work,we propose and demonstrate that the birefringence of plasmonic nanostructures can be wielded to transform circularly polarised light into light carrying orbital angular momentum.A device operating at visible wavelengths is designed from a space-variant array of subwavelength plasmonic nano-antennas.Experiment confirms that circularly polarised light transmitted through the device is imbued with orbital angular momentum of 62"(with conversion efficiency of at least 1%).This technology paves the way towards ultrathin orbital angular momentum generators that could be integrated into applications for spectroscopy,nanoscale sensing and classical or quantum communications using integrated photonic devices.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号