首页> 中文期刊> 《光:科学与应用(英文版)》 >Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization

Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization

         

摘要

The photovoltaic performance of perovskite solar cell is determined by multiple interrelated factors,such as perovskite compositions,electronic properties of each transport layer and fabrication parameters,which makes it rather challenging for optimization of device performances and discovery of underlying mechanisms.Here,we propose and realize a novel machine learning approach based on forward-reverse framework to establish the relationship between key parameters and photovoltaic performance in high-profile MASnxPb1-xI3 perovskite materials.The proposed method establishes the asymmetrically bowing relationship between band gap and Sn composition,which is precisely verified by our experiments.Based on the analysis of structural evolution and SHAP library,the rapid-change region and low-bandgap plateau region for small and large Sn composition are explained,respectively.By establishing the models for photovoltaic parameters of working photovoltaic devices,the deviation of short-circuit current and open-circuit voltage with band gap in defective-zone and low-bandgap-plateau regions from Shockley-Queisser theory is captured by our models,and the former is due to the deep-level traps formed by crystallographic distortion and the latter is due to the enhanced susceptibility by increased Sn4+content.The more difficulty for hole extraction than electron is also concluded in the models and the prediction curve of power conversion efficiency is in a good agreement with Shockley-Queisser limit.With the help of search and optimization algorithms,an optimized Sn:Pb composition ratio near 0.6 is finally obtained for high-performance perovskite solar cells,then verified by our experiments.Our constructive method could also be applicable to other material optimization and efficient device development.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号