首页> 中文期刊> 《光:科学与应用(英文版)》 >Mathematical operations and equation solving with reconfigurable metadevices

Mathematical operations and equation solving with reconfigurable metadevices

         

摘要

Performing analog computations with metastructures is an emerging wave-based paradigm for solving mathematical problems.For such devices,one major challenge is their reconfigurability,especially without the need for a priori mathematical computations or computationally-intensive optimization.Their equation-solving capabilities are applied only to matrices with special spectral(eigenvalue)distribution.Here we report the theory and design of wave-based metastructures using tunable elements capable of solving integral/differential equations in a fully-reconfigurable fashion.We consider two architectures:the Miller architecture,which requires the singular-value decomposition,and an alternative intuitive direct-complex-matrix(DCM)architecture introduced here,which does not require a priori mathematical decomposition.As examples,we demonstrate,using system-level simulation tools,the solutions of integral and differential equations.We then expand the matrix inverting capabilities of both architectures toward evaluating the generalized Moore-Penrose matrix inversion.Therefore,we provide evidence that metadevices can implement generalized matrix inversions and act as the basis for the gradient descent method for solutions to a wide variety of problems.Finally,a general upper bound of the solution convergence time reveals the rich potential that such metadevices can offer for stationary iterative schemes.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号